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Abstract. The mass difference for mirror nuclides is expressed in terms of the 
curvature 2Cz of the corresponding isobaric mass parabola and the (fractional) 
‘atomic number’ 2, corresponding to its minimum. With the Coulomb energy of 
a nucleus taken as y iZ(Z - l)/A1I3, it is shown that 

Cz(A -22,)  = p +yA(A2’3  -A-1i3) 

where p represents the hydrogen-neutron mass difference. The relationship is valid 
for both odd and even values of A. The availability of empirical values of Cz and Z. 
permits the evaluation of y A  and thence the ‘Coulomb-energy radius’ Rc = rAA1‘3 
where rA = 6 e 2 / y A .  Consideration of a ‘quantal’ formula for the Coulomb energy of 
a nucleus shows that the ‘quantal’ values of Yd are slightly smaller than the ‘classical’ 
values but the difference becomes negligible for large values of A. Although there 
are significant variations in T A ,  the general trend is to smaller values of r A  as A gets 
larger, e.g. r A  = 1.47 fm for 16 Q A < 74 whereas = 1-30  fm for 120 < A < 198. 
Values of corresponding to almost all values of A from 16 to 249 are given 
graphically and estimates of the error are included. 

1. Introduction 
The Coulomb energy of a nucleus with a charge Ze that is uniformly distributed 

throughout a sphere of radius R is commonly taken as gZ(Z- l)ez/R (Bethe and Bacher 
1936, Mayer and Jensen 1955, p. 7). For certain nuclei the Coulomb-energy difference is 
a measurable quantity and the formula is used to determine nuclear radii. Empirically, 
it is found that R/A1j3 roughly approximates to a constant (Blatt and Weisskopf 1952, p. 15) 
where A is the mass number. Accordingly, for the present, the Coulomb energy of a 
nucleus is expressed in the form 

and the ‘Coulomb-energy radius’ (Evans 1955, p. 32) is taken as R,  = rAAli3 where 
y A  3 $e2/yA.  I t  should be noted that the parameter y A  can be regarded as allowing for 
the dependence of the Coulomb energy on such factors as the shape of the nucleus and 
the charge distribution (Swiatecki 1964, p. 58). Consequently, R, represents an ‘equivalent’ 
value corresponding to a spherical nucleus with a uniform charge density and the para- 
meter rA may serve to indicate variations in the shape of the nucleus (Siemens and Bethe 
1967) and/or departures from uniform charge density. 

Two isobars (A = constant) that have the proton number Z of one equal to the 
neutron number A-2 of the other are called ‘mirror nuclides’. Previous determinations 
of Coulomb-energy radii from the energy difference for mirror nuclides have been 
restricted to small values of A (e.g. Elton 1961, p. 56), since mirror nuclides are not 
‘observed’ for A > 43. However, in the present paper, it is shown that the mirror-nuclide 
method can be extended to include all values of A, if one employs an ‘extrapolation’ of the 
corresponding isobaric mass parabola. The availability of ‘Coulomb-energy radii’ for the 
complete range of A values should be helpful in a study of the variation of the Coulomb 
energy with mass number. 

2. The mirror-nuclide mass difference 
= Au+$A 

where $A is called the ‘mass excess’ (Fleury and de Boer 1962). Assuming that the 
The mass of an atom, relative to 12C, can be expressed in the form 
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‘nuclidic components’ are protons, neutrons and electrons, one finds that the mass of a 
stable atom is less than the sum of the masses of the ‘components’. The energy equivalent 
of the difference is referred to as ‘binding energy’ and can be expressed in the form 

zE  = K A + P Z - ~ A  (in MeV) 

where the values of K and P are related to the masses of the ‘nuclidic components’. Alterna- 
tively, a ‘theoretical approach’, e.g. Bethe-Weizsacker equation (Bethe and Bacher 1936), 
suggests the form 

A A 

where $En represents ‘specific’ nuclear terms and represents the ‘electronic’ binding 
energy. Thus neglecting the term zEe which is several orders of magnitude smaller than 
$Ec we obtain the relationship 

A A A  ZA (in MeV) = Y . A + ~ Z - , E , + ~ E ~ .  

It is generally assumed that mirror nuclides corresponding to a particular A have a common 
value for $En (Mayer and Jensen 19.5.5, p. 27). Moreover, mirror nuclides with A odd have 
2 = &(A 1). It therefore follows from equations (1) and (2) that the mirror-nuclide mass 
difference is given by the relationship 

A- 1 
8Mo = : (A  1- ,?A - tc.4 - 1IAA = P + Y A  A1’3 (in MeV). ( 3 )  

The value of corresponding to the ‘hydrogen-neutron’ hypothesis is - 0-783 MeV. Thus, 
when 8Mo is known, equation (3) yields a value for y A  and thence the ‘Coulomb-energy 
radius’ of the nucleus. 

3. The mirror-nuclide mass difference from isobaric mass parabolas 
Empirically, it is found that for isobars of a given ‘class’ of nuclide (e.g. even A, even 2) 

a plot of the mass excess $A against 2 is parabolic to a high degree of approximation. 
The two parabolas associated with even-A nuclides are identical in form but have a relative 
displacement E along their common axis (Bethe and Bacher 1936, Bohr and Wheeler 1939). 
The situation for odd-A isobars is similar, only the displacement E is much smaller 
(Glueckhauf 1948) and in most cases is less than 0.3 MeV (Dewdney 1963). Accordingly, 
the mass excess can be expressed in the form 

A .A (in MeV) = CO+ C,Z+ C2Z2 (4) 
where CO, C1 and C, are functions of A alone, with the qualification that CO depends also 
on the ‘class’ of nuclide. It follows that the common abscissa of the minima of the isobaric 
mass parabolas is - (C,/C,) = 2,. In  general, 2, has a fractional value. Early calculations 
of C, and 2, were necessarily based on scanty experimental data. However, with the 
empirical data now available, statistical determinations of the parabolic parameters are 
possible. Values of C, and Z,, corresponding to values of A from 16 to 249, have been 
determined by Dewdney (1963) employing total P-decay energies and by Hillman (1964, 
pp. 67-73) using nuclidic masses. 

A graphical representation of the mirror-nuclide mass difference in terms of the 
‘constants’ of the corresponding isobaric mass parabola is given in figure 1. Introducing 
the value 2, &A, it follows that mirror nuclides with A odd have 2 = Z,-I&. Thus 
from equation (4) we have that 8Mo = Cl+2C,Zo if E = 0. Therefore, with 

and 

it follows that 8144~ E CJ,. Substituting in equation (3) we have the relationship 

I, = -4 - 22, = 2(2 ,  - 2,) 

c, + 2 C J ,  = 0 
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A t o m i c  number  Z 

Figure 1. Isobaric mass parabola = Co+C1Z+CzZ2 and the mirror-nuclide 
mass difference SMo which equals C2(A -22 , )  = CJ* .  

which is valid for odd values of A if E is negligible with respect to C21x. On the other 
hand, mirror nuclides with A even have 2 = 2, ’. 1 where 2, is an integer ; consequently 
the mirror nuclides correspond to adjacent points on the same mass parabola and their 
mass difference SMe is independent of E .  It follows from equation (4) that SAMe = 2C21,. 
However, from equations (1) and (2) it follows that 

Therefore, equation (5) is also applicable when A is even. Values of y A  and rA that are 
obtained from equation ( 5 )  will be referred to as ‘classical’ values. 

4. Classical values of yA and rA 
Equation (5) indicates that for y A  equal to a constant, a plot of the empirical values of 

C21, against (A2I3 - A-ll3) should be linear with the slope equal to y A  and the intercept 
equal to p. On the other hand, if y A  has a range of values, the points should be scattered 
over a wedge shaped area, with the tip of the wedge corresponding to the common inter- 
cept p. A plot of C21h against (A213 - A-113) that employs values of Cz and I ,  based on 
Dewdney’s (1963) analysis is shown in figure 2. The  scatter for the set of points suggests 
that y A  has a range of values. 

Assuming p = - 0.783 MeV, equation ( 5 )  has been used to obtain values of y A  and Y,. 
For odd and even values of A from 16 to 198, the mean value of y A  is 0.62 MeV and the 
mean value of r, is 1-45 fm. A graphical representation of the values of rA is given in figure 3 ; 
a least-squares fit to a straight line for 16 < A 6 198 indicates a trend to smaller values 
of rA as A gets larger. 

5. A quantal relationship for the mirror-nuclide mass difference 
Since one might question the appropriateness of equation (1) in dealing with the 

domain of the nucleus, consideration is now given to the use of a ‘quantal’ formula. Elton 
(1961, pp. 52-3) outlines the development of a ‘quantal ’relationship for the Coulomb 
energy of a nucleus which has the form 

2 2  - K2413 
E ,  = + e 2 - - - - -  

R 
where K is an unspecified constant. An equivalent relationship given by Bethe and 
Bacher (1936), in effect, assigns the value 0.767 to K. Accordingly, the ‘quantal’ expression 
is taken as 

2’- 0.76724’3 
(6) 

A 
Z E w  = Y A  
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Figure 2. Values of CzI* which equals the mirror-nuclide mass difference when A is 
odd and one half the same when A is even, plotted against (A2I3 -A-IJ3),  showing 
the variation in the 'Coulomb-energy coefficient' y as given by the relationship 
C21+ = ,B+y(AZ'3-A-1'3) where A is the mass number and p = -0.783 MeV; 
(a) odd A values, (b) even A values. Values of Cz and I .  are from Dewdney (1963). 

The error in CzI.  is shown only if greater than 0.25 MeV. 
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Figure 3. Classical and quantal values of the ‘radius parameter’ Y A  = Rc/A113, 
plotted against the mass number A ;  (a)  odd A values, (b) even A values. For each ‘pair’ 
of points, the upper point represents the classical value of Y ~ .  A least-squares repre- 
sentation of the classical values of Y A  for both odd and even values of A up to 198 
is given by the upper straight line; similarly, the lower straight line represents the 
quantal values of T A .  The ‘internal error’ in y A  (heavy line) is shown only if greater than 
0.01 fm; the ‘extemal error’ (dot) is shown only if greater than the ‘internal error’. 
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It follows that for mirror nuclides with A odd, the Coulomb energy can be expressed in 
the form 

(A & l), - Z2I3(0-767)(A ~t 1)413 
4A113 AEcq = Y A  

Consequently, to a high degree of approximation, 

8(AEcq) = Y ~ { A ’ ” ~  - $(0*767)22‘3}. 

The ‘quantal’ counterpart of equation (5) is therefore 

Furthermore, recalling that mirror nuclides with A even have 2 2  = A & 2, it is readily 
seen that equation (7) is also applicable when A is even. 

6. Quantal values of v, 
Assuming /3 = -0.783 MeV, equation (7) has been used to obtain ‘quantal’ values of 

y A  and r,; the mean value? of 7, is 0.64 MeV and the mean value? of Y, is 1.41 fm. A plot 
of the ‘quantal’ values of Y, against A is given in figure 3 ; the least-squares straight line 
indicates a trend to smaller values of rA as A gets larger. It should be noted that the 
‘quantal’ values of T,  are contingent on the value assigned to the ‘exchange constant’ 
(0.767) in equation (6). However, the effect of the ‘exchange constant’ on the value of Y, 
diminishes as A increases (0,812 Thus we note that for 16 < A Q 74 the value 
of 7, is 1.47 fm whereas for 120 < A 6 198 the value of 7, is 1-30 fm. Significantly, 
the latter value is closer to that given by other ‘charge sensitive’ methods, e.g. electron 
scattering (Hofstadter 1956) 1.20-1.25 fm, proton scattering (Glassgold 1958) 1-25 fm, 
and p-mesonic atoms (Fitch and Rainwater 1953) 1.19 fm. 

7. Discussion 
Equations (5) and (7) indicate that the ‘classical’ and ‘quantal’ values of 7 ,  should be 

essentially the same for large values of A. Thus, it is of interest to note that the intersection 
of the two least-squares lines in figure 3 corresponds to Y, N 1.16 fm. Furthermore, it 
is apparent from figure 3 that certain changes in A produce significant changes in Y, 
irrespective of the relationship employed for the Coulomb energy. In  this regard, it should 
be noted that the ‘extreme’ values of rA cannot be attributed, in general, to extremely large 
experimental error or marked deviation from ‘parabolic systematics’. In  Dewdney’s (1 963) 
analysis a measure of the former is given by the ‘internal’ error and a measure of the latter 
is given by the ‘external’ error. 

Figure 2 shows estimates of the ‘internal’ error in C J ,  that are greater than 0.25 Mev 
which corresponds to the radius of a ‘marker’ dot. The ‘estimates’ are standard deviations 
5 for the product C21, and are based on Dewdney’s values of 5 for Cz and 5 for Z,. It is 
worth noting, however, that C, and Z ,  are determined from the same data and have a 
positive correlation ; therefore the ‘uncertainty’ in C z l ,  should be somewhat less than that 
indicated. Figure 3 shows the ‘internal’ errors in y A  that are greater than 0.01 fm and 
also the available ‘external’ errors that are greater than the corresponding ‘internal’ error. 
The  average ‘internal’ error in y A  for 156 A values is 0.047 fm, with 34 values less than 
0.01 fm and 18 values greater than 0.1 fm. On the other hand, the average ‘external’ error 
in Y, for 68 A values is 0.090 fm, with 6 values less than 0.01 fm and 6 values greater than 
0.2 fm. The  ratio of the ‘external’ error to the ‘internal’ error is, on the average, close 
to 3, if one excludes the 9 cases where the ratio is greater than 10; the  latter are, in the 
main, associated with ‘magic numbers’ as pointed out by Dewdney (1963). Nevertheless, 
in 11 cases out of 68 the ‘external’ error is less than the ‘internal’ error. 
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I t  is evident that the present determination of Coulomb-energy radii for values of A 
greater than 43 depends on an ‘extrapolation’ of the empirical mass parabola to 2 = $A. 
An examination of the ‘external’ errors indicates that in many cases the parabolic systematics 
is quite exact and warrants some degree of extrapolation. I t  should be noted, however, 
that the quantity of interest is C z I ,  which is the ‘slope’ of the parabola at 2 = -&A and 
the extrapolation is therefore based on a ‘linear’ function of 2. Accordingly the ‘error’ 
in the (estimated) slope of the parabola at 2 = BA is approximately I ,  times the ‘error’ 
in C2 where the latter is determined from a least-squares fit of known values to the ‘linear’ 
function of 2 (Dewdney 1963). 

I t  is noteworthy that the determination of Coulomb-energy radii from isobaric mass 
parabolas permits a much more extensive investigation (16 < A < 249) of Coulomb 
energies than is possible from the consideration of only naturally occurring mirror-nuclides 
(A < 43). Furthermore, the investigation reveals significant variations in the ‘radius 
parameter’ R0/A1’3 which could be the result of non-uniform charge density or deviations 
from sphericity for the nucleus. 
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